Examining High Redshift Rotation Curves and Dark Matter Profiles Outside the Local Universe

Abstract

Examination of galactic rotation curves in the local universe has yielded evidence of both cusp and core type dark matter profiles. We present one of the first studies of a galactic rotation curve for a distant gravitationally-lensed massive, dusty star-forming galaxy, CL2244-1, with a spectroscopic redshift 1.77. Using VLT/XSHOOTER spectroscopy, we perform a 2D spectral analysis of the H-alpha emission. With this rotation curve, we fit a dark matter density profile and determine the functional form of the profile (cusp or core). Predictions from comparing the shape of the rotation curve of CL2244-1 to that of M33 and other galaxies in the local universe suggest that the dark matter profile of CL2244-1 is best represented by a cuspy profile. Though this cuspy profile supports the cold dark matter cosmological model, we cannot rule out self-interacting dark matter, whose interactions may not have had time to shift the density profile to a core at such early times.

Publication
American Astronomical Society Meeting Abstracts #231