

Outline

- 1. What is DASH and why do we need it?
- 2. The COSMOS-DASH Survey and Morphological Catalog
- 3. Quantifying and qualifying DASH Morphologies
- 4. The effect of environment on the low-mass size mass relation

The Galaxy Stellar Mass Relation

Depth

1) Morphologies require high resolution

2) Blending significant at high redshift

Mowla+19

2) Blending significant at high redshift

Mowla+19

2) Blending significant at high redshift

Mowla+19

Need wide field HST imaging...

2 reasons for HST inefficiency:

2 reasons for HST inefficiency:

1. 4.6" FOV (750 pointings/deg²)

2 reasons for HST inefficiency:

1. 4.6" FOV (750 pointings/deg²)

2. Guide star acquisition overhead (in NIR: 1 pointing/orbit)

2 reasons for HST inefficiency:

1. 4.6" FOV (750 pointings/deg²)

2. Guide star acquisition overhead (in NIR: 1 pointing/orbit)

Momcheva+17

hting/orbit)

Momcheva+17

hting/orbit)

Momcheva+17

COSMOS-DASH Sample

Cross match *HST* selected photometric catalog to UltraVISTA (Exclude galaxies in CANDELS)

SNR>10 identifies 51,534 galaxies total in our catalog

Calibration Field

Cross match to CANDELS morphological catalog

SNR>5 identifies 483 galaxies total

CANDELS- and DASHonly reductions to constrain and estimate parameter error on DASH morphologies

GALFIT Pipeline

- 1. Image and segmentation cutouts with *Montage*
- 2. *SExtractor* (Bertin & Arnouts 1996) to get initial guesses
- 3. PSFs with grizli (Brammer 2019)
- 4. Sérsic model fit with *GALFIT* (Peng et al. 2002)
- 5. Tabulate and flag model parameters

			×	٠	X		۲	×
×	*	X	×	•	×	*	٠	
*	۲	×	×	×	X	×	۲	×
	×	*	*	۲	×	×	×	
	×	×	×	X			×	×
	×	×		×		×	X	×
×	×		•	۲	-		×	×
×	×	*	×					

- # ID RA DEC flag use mag dmag re dre n dn q dq pa dpa kron f_F160W_auto e_F160W_auto f_F160W_tot e_F160W_tot snr flag_limit_r flag_limit_n 5_sigma_depth chi chi_nu
- # ID: Object identifier from UVISTA DR2 catalog
- # RA,DEC: Right ascension and declination (J2000; decimal degrees)
- # flag: 0=good, 1=suspicious, 2=bad, 3=failed, 4=no coverage (see Cutler et al.)
- # use: 1=Galfit flag<2,re>FWHM (see Cutler et al.)
- # mag: GALFIT best-fit magnitude
 # dmagn.upcontainty in CALFIT magnitude
- # dmag: Uncertainty in GALFIT magnitude
 # re: GALFIT heat fit offective (helf life
- # re: GALFIT best-fit effective (half-light) radius in arcsec # drag Uncontainty in CALETT offective radius in arcsec
- # dre: Uncertainty in GALFIT effective radius in arcsec # n: CALFIT heat fit County index
- # n: GALFIT best-fit Sersic index

Parameter Errors

Fit 483 galaxies in DASH- and CANDELS-only reductions of calibration field

Use bootstrapping to estimate errors (noise map+empty apertures)

Parameter Errors

Fit 483 galaxies in DASH- and CANDELS-only reductions of calibration field

Use bootstrapping to estimate errors (noise map+empty apertures)

Parameter Errors

Fit 483 galaxies in DASH- and CANDELS-only reductions of calibration field

Use bootstrapping to estimate errors (noise map+empty apertures)

Size Evolution

Cutler+in prep.

Cutler+in prep.

DASH observations are sufficient for a wide range of sizes and masses

DASH observations are sufficient for a wide range of sizes and masses

Size Mass Flattening

Massive star-

Quenching + Late stage mergers

Massive quiescent galaxies

Massive starforming galaxies

Quenching + Late stage mergers

 $100 \qquad 0 < z < 1$ $100 \qquad 0 < z < 1$ $10 \qquad 0 < z < 1$

Massive quiescent galaxies

Massive starforming galaxies

Quenching + Late stage mergers

Massive quiescent galaxies

Galaxy shape and size changes:

More elliptical

More compact

Massive starforming galaxies

Quenching + Late stage mergers

Massive quiescent galaxies

Galaxy shape and size changes:

More elliptical

More compact

Occurs in overdense environments (clusters, filaments)

Low mass starforming galaxy

Low mass quiescent galaxy

Low mass starforming galaxy

ugh

Low mass quiescent galaxy

Low mass starforming galaxy

Quenching through gas expulsion

Low mass quiescent galaxy

Galaxy shape and size changes less:

More disk-like

Similar size to star forming galaxies

Low mass starforming galaxy

Quenching through gas expulsion

Low mass quiescent galaxy

Galaxy shape and size changes less:

More disk-like

Similar size to star forming galaxies

Occurs in underdense environments

Have large, continuous area to probe range of environments

Madau & Dickinson 14

Have large, continuous area to probe range of environments

Madau & Dickinson 14

Cross match DASH to COSMOS galaxy field density catalog (Darvish et al. 2017)

Madau & Dickinson 14

Many other parameters play a significant role in environment and evolution

Cutler+in prep.

Look at change in quiescent size with environment

Look at change in *quiescent* size with environment

Axis Ratio and Environment

Axis Ratio and Environment

Axis Ratio and Environment

Larger sizes for smaller axis ratios

Smaller axis ratios in underdense environments

Sérsic Index and Environment

Sérsic Index and Environment

Larger sizes for smaller Sérsic indices

Smaller Sérsic indices in underdense environments

Summary

- 1. HST-selected COSMOS-DASH morphological catalog
- 2. Robust sizes to $H_{160}\sim23$ and Sérsic indices to $H_{160}\sim22$
- 3. Consistent size evolution with CANDELS/3D-HST morphologies
- 4. DASH results can produce results for a wide range of sizes and masses
- Observe a flattening of the size mass relation for low mass quiescent galaxies
- 6. Trends with axis ratio, Sérsic index, and field density point to an environmental dependence of the size mass flattening

Sam Cutler secutler@astro.umass.edu

