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The Spitzer Infrared Nearby Galaxies Survey (SINGS) Hubble Tuning-Fork

The Spitzer Space Telescope observed 75 galaxies as part of its SINGS
(Spitzer Infrared Nearby Galaxies Survey) Legacy Program. The
galaxies are presented here in a Hubble Tuning-Fork diagram, which
groups galaxies according to the morphology of their nuclei and spiral
arms. The designation of these galaxies and their placement in the
diagram is based on their visible-light appearance. The main goal of the
SINGS program is to characterize the infrared properties of a wide range
of galaxy types. The images of the galaxies are composites created
from data taken by IRAC (the Infrared Array Camera) at 3.6 and 8.0 um,
and MIPS (the Multiband Imaging Photometer for Spitzer) at 24 um.

The infrared range probed by these and other observations
taken for the SINGS project allows for the detailed study of
star formation, dust emission, and the distribution of stars in
each galaxy. Light from old stars appears as blue in the
images, while the lumpy knots of green and red light are
produced by dust clouds surrounding newly born stars. The
elliptical galaxies on the left are almost entirely made of old
stars, while spiral galaxies like our own Milky Way are rich in

young stars and the raw materials for future star formation. £
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More information can be found at:
http://sings.stsci.edu/
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Massive galaxies

Compact central regions already in place by z~2.5

L L L L L L L L L L L IlllllllIIIlllllllllIlIlll
10 —
’B ~— B
O
N g
S e B
(@)] [ }]
o -
mass < 5 kpc 1_
10.8 E
10.6 = i
—Illllllllllllllllllll _Illlllllllllllllllllilllll-
0 0.5 T 1.5 2 0 05 1 15 2 25
redshift van Dokkum+10 4 van Dokkum+14

Sam Cutler, Nov. 1 2021



Inside-out formation?

15
e Massive galaxies form
central parts first — 10
=
=
e sSFRrates are elevated 7_
at large radii at z~1 X,
~ 5
Ll
: 7))
e (Centers of spirals are ® 995<|\|<|/|<91.g
formed at high redshift 3 oL -
(“naked bulges”)? 10.5<M<11

0 2 < 6 8 10

Sam Cutler, Nov. 1 2021



Milky-Way-like galaxies

Bulges built up at same time as disks: no naked bulges!
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Bulge formation by gas
accretion and clump migration
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Bulge formation by gas
accretion and clump migration

Seen in hydrodynamic simulations

Ceverino+09, Dekel+09
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Bulge formation by gas
accretion and clump migration

Clumps are older and denser closer to the galactic center
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Bulge formation by gas
accretion and clump migration

Clumps are older and denser closer to the galactic center
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Bulge formation by wet disk
contraction
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Bulge formation by wet disk
contraction

Compaction:
Triggered by an intense gas inflow event,
involving minor mergers or counter-rotating
streams, and is commonly associated with
violent disc instability. The inflow rate is
more efficient than the SFR.

Blue Nugget Phase:

Associated with a compact, massive core of gas and
star-formation rate, short depletion time and high
gas fraction. The downturn at the upper bound is
due to the peak in SFR and outflow and the
suppression of inflow. Onset of quenching inside-out
! due to central gas depletion.
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Quenching Attempt:

Central gas depletion gives rise to inside-
out quenching. In low-mass haloes at high
redshift, when tep < tiep, inflow of gas

resumes, leading to the prerequisite for 3 : :
another compaction. “}"

Inflow rate cannot
recover in hot haloes
and at late times (tep
> ldep), leading to gas
depletion and full
quenching.
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The Milky Way

The galactic center is chemically older and has
Kinematic signatures of clump accretion
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Bulge sample

60 galaxies at z~2.3 from MOSDEF >

e Mostly galaxies in the middle of
the SFR-M relation

* Broadband photometry from
CANDELS/SHARDS in GOODS-N:

e 9 HST bands, ground-based U- and K-
band, Spitzer/IRAC bands

* H-,J-, and K-band spectra
(redshifts and metallicities) from
MOSDEF

HFIOO'

* AGN removed with X-ray, IR,

emission line diagnostics 8 9 10 11 12
log (M / Mo) Kriek+15
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Bulge Sample

Primarily located in middle of main sequence

log(SFR) [Me yr™']
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Analysis

Bulge detection and
decompositions

SED fitting: Prospector

Dealing with unresolved
photometry



Bulge decomposition

Bulges are selected with z—H colors
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Bulge decomposition

Bulges are selected with z—H colors
flGO/leS/fSSO
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Bulge decomposition

Photometry measured using same aperture in all filters

FA35W F606W F775W F814W F850LP

ACS

WFC3

Sam Cutler, Nov. 1 2021



respec @r

1. Bayesian forward-
modeling and
Monte-Carlo
sampling
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Priors are important

Spectroscopy most useful in constraining the age/metallicity

SARRRRRREERES namms non s L AR
o 20f 3
I; 1‘5;_ ll -;
i 2 of e —
;9'“5 ‘; 0sf :
o Vv 3 ]
w N E W o0F -l
@ /\;9: ‘;_05;_ :
O e F é
M R - T T T P TS SRS T
oF 0 1 2 3 4 5 6
o lookback time [Gyr]
OF
~ ~E spectroscopy+photometry
g ofF
< OF spectroscopy only
D
o F photometry only

tage [GyF]

Tsr [Gyr]

log Z. [Z5]

log M. [Mg] log sSFR Tsr [Gyr] log Z. [Zo6]

Tacchella+21

Sam Cutler, Nov. 1 2021



B Parametric I Non-parametric w— [llustris = **c* Ilustris (binned)
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Priors are important

Parametric SFHs can dramatically differ from non-parametric SFHs
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Priors are important

Choice of non-parametric prior can also impact SFH significantly
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Priors are important

Priors
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Prospector ingredients

Separately run on bulge, disk and total galaxy

Photometry:
e All HST bands, K-band, IRAC (U-band for total galaxy)
Model:

* Non-parametric SFH (7/5 time bins), Chabrier IMF, dust and nebular
emission

Free Parameters:

o Stellar metallicity (log Z.), V-band optical depth (zy), ionization

parameter (U

(A log(SFR))

o), total mass formed (Mp,), ratio of SFRs

Priors:

e Gaussian prior on log Z., continuity prior on SFH
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Prospector ingredients

IRAC is extremely important in SED fitting

Stellar Mass Recovery

W No Spitzer (68% C . ) ‘
O Spitzer included (68% C.1.) b

—

o —
o o

A log(M/Mg)
o
o

295 " ""Too0 10.5 . 11.5
log(M/Mg), 39 bands
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Dealing with IRAC photometry

IRAC photometry can be determined iteratively for a two
component system

Reason behind simple decomposition vs pixel by pixel or
Voronoi binning
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Dealing with IRAC photometry
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Dealing with IRAC photometry

1. Fit HST photometry only for bulge and disk

> Only use 5 time bins
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Dealing with IRAC photometry

1. Fit HST photometry only for bulge and disk
> Only use 5 time bins

2. Correct K/IRAC from SED predictions using F160W:

fx,obs(Fl 60W)
Jxmap(F160W)

ﬁ(,corr(l) — fX,MAP(/D <
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Dealing with IRAC photometry

1. Fit HST photometry only for bulge and disk
> Only use 5 time bins

2. Correct K/IRAC from SED predictions using F160W:
fe obs(F160W) )

1) = A
ﬁ(,corr( ) fx,MAP( )< fo M Ap(F160W)

3. Scalef, .. (1) by total K/IRAC flux ( f,;,(1)):

f;)bs(;{ )
/ A = j“
fr(A) f;(,corr( )< Zx fx,corr(/i)>

,COIT
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Dealing with IRAC photometry

1. Fit HST photometry only for bulge and disk
> Only use 5 time bins

2. Correct K/IRAC from SED predictions using F160W:
fe obs(F160W) )

1) = A
f;(,corr( ) fx,MAP( )< fo M Ap(F160W)

3. Scale f, (1) by total K/IRAC flux ( £,,,(1)):

f;)bs(;{ )
/ A = j“
fr(A) f;(,corr( )< Zx fx,corr(/i)>

4. Refit components with f.(1) for observed K/IRAC flux and repeat
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Dealing with IRAC photometry

1. Fit HST photometry only for bulge and disk
> Only use 5 time bins

2. Correct K/IRAC from SED predictions using F160W:
fe obs(F160W) )

1) = A
f;(,corr( ) fx,MAP( )< fo M Ap(F160W)

3. Scale f, (1) by total K/IRAC flux ( £,,,(1)):

f;)bs(;{ )
/ A = j“
fr(A) f;(,corr( )< Zx fx,corr(/i)>

4. Refit components with f.(1) for observed K/IRAC flux and repeat

5. Stop when Af.(4)/f.(2) < 0.05 for all but one band
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Dealing with IRAC photometry
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Results

Detections

Star formation histories
and bulge formation

Future tests and analyses
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Structural comparisons
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Star formation histories

Bulge Disk Total

Sharper peaks in
SFH, rising total SFH

]'Og(MtOtal/M@ ) < 9.5

log(SFR) [Gyr™!]
9.5 < log(Miota /Mo ) < 10.5

Less peaked SFH, more
constant total SFH

log(MtOtal/M@ ) > 105

107 100 10! 107 100 101 107 100 101
Lookback Time [Gyr]
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Star formation histories

Disk Total

Sharper peaks in
SFH, rising total SFH

]'Og(MtOta,l/MG) ) < 9.5

Sub-massive galaxies: rapid
formation of bulge later
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Star formation histories

1.
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Main sequence evolution

Majority of galaxies experience a steep decrease in SFR,
which seems to lessen with increasing mass

* 100 Myr °
* 10 Myr |
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Ages and SFRs

Compare compactness with SFH parameters
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Ages and SFRs

100+

tu [Gyr]

* Bulges are younger and have
higher sSFR than disks and the
overall galaxy

101}

* More massive bulges have lower
sSFR and are older than lower
mass bulges
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Ages and SFRs

* Younger galaxies have —
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Ages and SFRs
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Ages and SFRs
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Ages and SFRs

* Younger galaxies have
decreased more in sSFR

| ess massive (logM<10.5)
galaxies have intense burst in
star formation

* No trend in size or density

» Compactness is not a factor
in forming the bulge

> Clump accretion may be
responsible
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Uncertainties and future
steps

o SED fitting and measuring nonparametric SFHs is
uncertain

 Bulge decomposition and iterative photometry methods
add to uncertainties

o Effect of different models/priors can be significant
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Uncertainties and future
steps: decomposition

Monte-Carlo sampling of
bulge flux:

e Straightforward

e Computationally
expensive

Sam Cutler, Nov. 1 2021
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Uncertainties and future
steps: metallicity priors

* For these results, assume disk dominates metallicity of galaxy
e Know MW bulge is metal poor
* Disk doesn’t always dominate light
e Future tests:
1. Metallicity prior on bulge, not disk
2. Metallicity prior on both
3. Attempt to incorporate spectra for subcomponents

* |n general, bulge and disk metallicities are comparable
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Uncertainties and future
steps: SFH priors

e Dirichlet and continuity prior both model wide range of
SFHs well

e Dirichlet prior may be better for burstier SFHs (tunable
with a parameter)

e Confirming certain features still exist with a different SFH
prior ensures these features are more likely to be real
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Summary

 Prospector SED fits to decomposed central and outer
components of 60 z~2.3 main sequence, star-forming
galaxies

e [terative method to incorporate IRAC and ground-based K-
band into decomposed SED fits

e SFHSs indicate central regions formed in burst of star
formation

 Burst of star formation lean towards increased clump
accretion, not a compaction event

e Future steps will be crucial in verifying these results
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Uncertainties and future
steps: priors
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